
"PROOF on Demand" (PoD) - v3.16

Anar Manafov, GSI, Scientific Computing division <A.Manafov@gsi.de>

"PROOF on Demand" (PoD) - v3.16
by Anar Manafov
Copyright © 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 GSI Helmholtzzentrum für Schwerionenforschung
GmbH, Scientific Computing division

iii

Table of Contents
1. Introduction .. 1

1.1. PROOF on Demand ... 1
1.2. Features ... 1

2. Requirements .. 3
2.1. User interface ... 3
2.2. Workers ... 3

3. Download ... 4
3.1. Download location ... 4
3.2. PoD Version Number Scheme ... 4

4. Installation .. 5
4.1. Step #1: Unpack the source ... 5
4.2. Step #2: Configure the source .. 5
4.3. Step #3: Build and install ... 6
4.4. Step #4: PoD Environment .. 6
4.5. Step #5: PoD shared Installation .. 6

5. Configuration .. 8
5.1. PoD user defaults configuration ... 8
5.2. User's environment on workers .. 13
5.3. XROOTD/XPROOFD .. 14

6. Quick Start .. 15
7. How to run ... 17

7.1. Environment ... 17
7.2. Server .. 17
7.3. Job Manager ... 17
7.4. PROOF workers .. 17
7.5. PROOF Connection String .. 18
7.6. Analysis ... 18
7.7. How to shut down PoD .. 18
7.8. if something is wrong ... 19

8. SSH plug-in .. 20
8.1. CLI ... 20
8.2. Configuration .. 21

9. How to test ... 22
9.1. Simple test ... 22

10. Command-line interface ... 23
pod-server ... 24
pod-info ... 25
pod-user-defaults .. 28
pod-prep-worker .. 29
pod-submit .. 30
pod-ssh ... 31
pod-remote .. 35

11. Tips .. 38
11.1. Handling large outputs via ROOT files .. 38

12. Known Issues .. 39
12.1. General Issues ... 39

/tmp on worker nodes ... 39
PoD on AFS ... 39
WARNING: File /afs/.../pod-worker is not readable by condor ... 39
It seems I run always X slaves, but I requested Y. ... 39
gLite environment issue at CERN's LSF .. 40

12.2. Condor Issues .. 40
Condor and AFS .. 40

12.3. Grid Issues .. 40
ClassAds and Namespace .. 40

"PROOF on Demand" (PoD) - v3.16

iv

GLOBUS Libs Relocation ... 41
GridSite headers missing ... 41
globus_config.h is missing .. 41

13. Support ... 42

v

List of Figures
1.1. A generic schema of PoD ... 1

vi

List of Tables
4.1. PoD configuration variables .. 5
5.1. PoD server configuration .. 8
5.2. PoD worker configuration ... 10
5.3. LSF plug-in configuration ... 11
5.4. PBS plug-in configuration ... 12
5.5. Grid Engine plug-in configuration .. 12
5.6. Condor plug-in configuration ... 13
7.1. PoD log files .. 19
10.1. PoD's ssh plug-in configuration fields .. 31

vii

List of Examples
10.1. PoD version information ... 26
10.2. available PROOF workers ... 26
10.3. PROOF connection string .. 27
10.4. PoD server status ... 27
10.5. Submit PoD jobs via SSH ... 33
10.6. Check the status of PoD jobs submitted via SSH ... 33
10.7. Clean PoD jobs submitted via SSH ... 33
10.8. Clean only specific worker nodes ... 34
10.9. Using remote PoD server .. 36

1

1. Introduction

1.1. PROOF on Demand
PROOF on Demand (PoD) is a tool-set (see Figure 1.1, “A generic schema of PoD”) developed at GSI, which sets
up a PROOF cluster on any resource management system. PoD is a user oriented product with an easy to use GUI
and a command-line interface. It is fully automated. No administrative privileges or special knowledge is required
to use it. PoD gives users, who don't have a centrally-administrated static PROOF cluster at their institutions, the
possibility to enjoy the full power of interactive analysis with PROOF.

PoD is a specially designed solution to provide a PROOF cluster on the fly.

Figure 1.1. A generic schema of PoD

1.2. Features
• Easy to use

The process of installation is very simple and fully automated. PoD works out of the box. Its distribution
contains preconfigured modules and everything users need to just immediately start to work with it right after
the installation.

• GUI & Command-line

PoD provides a simple and intuitive graphics user interface in order to simplify access to its functionality. For
user's convenience there is also a command line interface, it helps to manage a PoD cluster remotely or use
it in a batch mode.

• Native PROOF connections

http://www.gsi.de
http://root.cern.ch/drupal/category/package-context/proof

Introduction

2

Whenever possible, PoD setups direct PROOF connections between nodes. It results in a full functional PROOF
cluster. Users get native speed and the whole range of PROOF features. To use native connections an incoming
traffic must be allowed on PoD workers for a defined port. Otherwise PoD uses packet-forwarding algorithms.

• Packet-forwarding

When worker nodes are behind a firewall then PoD uses its packet-forwarding algorithms to maintain the
PROOF traffic. The algorithms are very efficient, there will be no speed penalty, but some PROOF functions
are limited.

• Multiuser/-core environment

PoD implements automatic port mapping algorithms to properly handle cases when several users start PoD
instances (servers/ workers) on the same machine. PoD also automatically manages situations when multiple
PoD workers are started on the same node. Private PoD instances can't disturb each other.

• Different job managers

PoD supports different job managers via a plug-in system. It is a very easy to extend system. PoD is currently
shipped with the following plug-ins:

• SSH,

• LSF (Load Sharing Facility),

• PBS Pro/OpenPBS/Torque (Portable Batch System),

• Grid Engine (Oracle/Sun Grid Engine),

• Condor,

• LoadLeveler (IBM Tivoli Workload Scheduler LoadLeveler),

• gLite.

3

2. Requirements
2.1. User interface
PoD UI/Server/WN run on Linux and Mac OS X.

General requirements:

• Incoming connection on pod-agent's port (configurable)

• ROOT 5.25.04 or higher (xrootd enabled)

• BOOST 1.33.1 or higher (to use pod-remote(1), BOOST 1.41.0 or higher is required)

• cmake 2.6.2 or higher

• shell: BASH

Additional requirements for gLite plug-in:

• gLite UI 3.2

• gLite WMS (WMProxy endpoint)

Additional requirements for SSH plug-in:

• A public key access (or password less, via ssh-agend, for example) to destination worker nodes.

2.2. Workers
General requirements:

• Outgoing connection for a port range (configurable). This is needed by pod-agent worker to be able to connect
to PoD server

• ROOT 5.25.04 or higher (xrootd enabled). A ROOT installation on worker nodes is not strictly required, but
is recommended. If available, it will significantly speed up the start up time of the PoD workers. If there is
no ROOT on WNs, PoD will download and use its default ROOT version for every worker node, which can
increase the start up time of the workers and the network traffic.

• shell: BASH

Additional requirements for gLite plug-in:

• gLite WNs (at least v3.0)

http://root.cern.ch
http://www.boost.org/
http://www.cmake.org/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://root.cern.ch

4

3. Download
3.1. Download location
Please, use PoD's Download page to get the latest version.

3.2. PoD Version Number Scheme
PoD version has a form of MAJOR.MINOR(.PATCH), where:

• MAJOR - the major number is increased when there are significant jumps in functionality.

• MINOR - the minor number is incremented when only minor features or significant fixes have been added.

• PATCH - represents a number of commits (patches) to a current major.minor pair.

Note

Starting with version 3.4, PoD changes its version numbering. It reflects the fact that PoD is both
a production system and a research project. PoD now uses odd minor version numbers to denote
development releases and even minor version numbers to denote stable releases.

http://pod.gsi.de/download.html

5

4. Installation
PoD supports Private and Shared installations.

A Private Installation - it is when a user installs PoD for individual use to his/her local folder. Any Private
Installation can be used by other users as well. It's just a matter of file privileges.

A Shared Installation - it is when a site administrator installs PoD in some central location, so it can be shared by
many users. This type of installation may be convenient for some users, since they don't need to install PoD by
their own. In case of a shared Installation you need to execute one additional step, see Section 4.5, “Step #5: PoD
shared Installation”. All the rest is the same as with Private Installations.

Be advised, that in both cases PoD acts identically and always provides private clusters, one for each user. In case of
a shared installation, users share only binaries and configurations, but each user get's its own PoD instance and can't
disturb other users. Each user can tune PoD by changing the PoD user defaults configuration in $HOME/.PoD/
PoD.cfg.

4.1. Step #1: Unpack the source
Unpack PoD tarball:

tar -xzvf PoD-X.Y.Z-Source.tar.gz

Tar will created a new directory ./PoD-X.Y.Z-Source, where X.Y.Z represents a version of PoD.

4.2. Step #2: Configure the source
Change to the PoD source directory:

cd ./PoD-X.Y.Z-Source

You can adjust some configuration settings in the BuildSetup.cmake bootstrap file. The following is a list
of variables:

Table 4.1. PoD configuration variables

Variable Description

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories.
(default $HOME/PoD/[PoD_Version])

CMAKE_BUILD_TYPE Set cmake build type. Possible options are: None,
Debug, Release, RelWithDebInfo, MinSizeRel (default
Release)

BUILD_DOCUMENTATION Build source code documentation. Possible options are:
ON/OFF (default OFF)

BUILD_TESTS Build PoD tests. Possible options are: ON/OFF (default
OFF)

Now, prepare a build directory for an out-of-source build and configure the source:

Installation

6

mkdir build
cd build
cmake -C ../BuildSetup.cmake ..

Tip

If for some reason, for example a missing dependency, configuration failed. After you get the issue
fixed, right before starting the cmake command it is recommended to delete everything in the build
directory recursively. This will guaranty a clean build every time the source configuration is restarted.

4.3. Step #3: Build and install
Issue the following commands to build and install PoD:

make
make install

Installation Prefix

Please note, that by default PoD will be installed in $HOME/PoD/X.Y.Z, where X.Y.Z is a version of
PoD. However users can change this behavior by setting the install prefix path in the bootstrap script
BuildSetup.cmake. Just uncomment the setting of CMAKE_INSTALL_PREFIX variable and
change dummy MY_PATH_HERE to a desired path.

4.4. Step #4: PoD Environment
In order to enable PoD's environment you need to source the PoD_env.sh script. Change to your newly installed
PoD directory and issue:

cd [PoD INSTALL DIRECTORY]
source PoD_env.sh

You need to source this script every time before using PoD in a new system shell. Simplify it by sourcing the
script in your bash profile.

Now the installation is done. But if you were preparing a shared installation, then please see the Section 4.5, “Step
#5: PoD shared Installation” as well.

Important

If there were problems during the installation, please see Chapter 13, Support or Chapter 12, Known
Issues.

4.5. Step #5: PoD shared Installation
If you installed PoD in some central location (by changing the default CMAKE_INSTALL_PREFIX, see
Section 4.2, “Step #2: Configure the source”), than you need to make one simple additional step.

Installation

7

Normally central installations or shared installations are restricted for read-only for users. You therefore need to
provide pre-compiled binaries for worker nodes, which are kept in $POD_LOCATION, so that other users could
simple re-use them. To do that just issue the following command:

pod-server getbins

Next time (TO-DO) we will provide a documentation on how to prepare your own binaries for worker nodes.

8

5. Configuration
As it was mentioned above PoD consists of several modules, each module respects PoD user defaults settings.
PoD is shipped with predefined configuration values, which should work in most use cases. However by changing
PoD user defaults values, you can fine-tune PoD for a specific environment and needs. Recommended only for
advanced users.

5.1. PoD user defaults configuration
Since PoD v2.1.1 a user defaults configuration file is supported. This is the configuration entry point of PoD. All
modules configure themselves according to that file. It must be located either in the $HOME/.PoD/ directory on
in the $POD_LOCATION/etc/ directory and be called PoD.cfg.

Tip

Every time users sources PoD's environment script, the script checks whether the configuration file
is exists and creates it if it's missing. Also the pod-user-defaults(1) command can be used to create
the default configuration file.

The PoD.cfg is a simple INI-like configuration file. Configuration file syntax is line based:

• A line in the form:

key_name=value

gives a value to an option.

• A line in the form:

[section name]

introduces a new section in the configuration file.

• The # character introduces a comment that spans until the end of the line.

The option names are relative to the section names, so the following configuration file part:

[gui.accessibility]
visual_bell=yes

is equivalent to

gui.accessibility.visual_bell=yes

Table 5.1. PoD server configuration

key value Description

server.work_dir string (default: $HOME/.PoD) PoD's working directory. Used by
PoD modules to store temporary
files, like pid files, for example. A
string of the value will be evaluated

Configuration

9

key value Description

before it is used, it therefore can
contain environment variables.

server.logfile_dir string (default: $HOME/.PoD/log) A path for PoD's log files. By
the defined path PoD modules will
place log files.

server.logfile_overwrite yes/no (default: yes) Defines whether PoD should
overwrite its log files when starting
a new session (PoD server's start/
restart cycle)

server.log_level numeric (default: 1) Defines the level of the log. There
are following numeric values are
allowed:

• 0: Fault/Critical

• 1: Fault/Critical/Info

• 2: Fault/Critical/Info/Warning

• 3: Fault/Critical/Info/Warning/
Debug

server.agent_shutdown_if_idle_for_secnumeric (default: 1800) Shut down a server if its idle time
is higher than the defined value in
seconds.

server.agent_local_client_port_(min/
max)

numeric (default: 20000/25000) Recommended for advanced users
only.
The following range is used by
PoD agent locally on the server
host, when in the packet-forwarding
mode. Each PROOF client gets its
proxy redirected vie the ports from
that range.

server.xproof_ports_range_(min/
max)

numeric (default: 21001/22000) Recommended for advanced users
only.
PoD's automatic port mapping
algorithms use this range to
dynamically assign ports to xproof
plug-in of xrootd when restarting
a PoD server. In multi-user/
core environment, when there are
many PoD processes on the same
physical machine, the automatic
port mapping prevents different
PoD process of different users to
disturb each other.

server.agent_ports_range_(min/
max)

numeric (default: 22001/23000) Recommended for advanced users
only.
PoD's automatic port mapping
algorithms use this range to
dynamically assign ports to pod-
agent when restarting a PoD server.
In multi-user/core environment,
when there are many PoD processes

Configuration

10

key value Description

on the same physical machine, the
automatic port mapping prevents
different PoD process of different
users to disturb each other.

server.agent_threads numeric (default: 5) A number of threads in a thread
pool. The thread pool is used by
the pod-agent to distribute tasks
of a proxy, when in the packet-
forwarding mode.

server.agent_node_readbuffer numeric (default: 5000) A buffer size, used by the packet-
forwarding algorithms (in bytes).
It will be allocated for each PoD
worker.

server.packet_forwarding yes/no/auto (default: auto) If workers are behind a firewall than
PoD will use its packet-forwarding
(PF) algorithms to maintain the
PROOF traffic between server and
workers. By setting this key to "yes"
you force PoD to use PF in any case.
If "auto" is set than PoD will decide
on the fly whether to use PF for
each worker individually based on
the possibility to directly connect to
worker.

Table 5.2. PoD worker configuration

key value Description

worker.work_dir string (default:
$POD_LOCATION)

PoD's working directory. Used by
PoD modules to store temporary
files, like pid files, for example. A
string of the value will be evaluated
before it is used, it therefore can
contain environment variables.

worker.logfile_dir string (default:
$POD_LOCATION)

A path for PoD's log files. By
the defined path PoD modules will
place log files.

worker.logfile_overwrite yes/no (default: yes) Defines whether PoD should
overwrite its log files when starting
a new session (PoD worker's start/
restart cycle)

worker.log_level numeric (default: 1) Defines the level of the log. There
are following numeric values are
allowed:

• 0: Fault/Critical

• 1: Fault/Critical/Info

• 2: Fault/Critical/Info/Warning

• 3: Fault/Critical/Info/Warning/
Debug

Configuration

11

key value Description

worker.set_my_rootsys yes/no (default: yes) Whether to use user's ROOTSYS
on workers. If set to "yes", than
the value of the worker.my_rootsys
key, will be exported to the workers.
See worker.my_rootsys for more
details. If set to "no", PoD will
download a default, pre-compiled
version of ROOT according to WN's
environment.

worker.my_rootsys string (default: $ROOTSYS) User's ROOTSYS to use on
workers. If set_my_rootsys is set
to "yes", than PoD will export bin
and library locations of this ROOT
version on the worker nodes. This is
especially useful if you use shared
home file system on the nodes where
PoD workers are started or you
know for sure the location of the
ROOT installation on the worker
nodes. A string of the value will
be evaluated before it is used, it
therefore can contain environment
variables.

worker.agent_shutdown_if_idle_for_secnumeric (default: 1800) Shut down a worker if its idle time
is higher than the defined value in
seconds.

worker.xproof_ports_range_(min/
max)

numeric (default: 21001/22000) Recommended for advanced users
only.
PoD's automatic port mapping
algorithms use this range to
dynamically assign ports to xproof
plug-in of xrootd when starting
a PoD worker. In multi-user/
core environment, when there are
many PoD processes on the same
physical machine, the automatic
port mapping prevents different
PoD process of different users to
disturb each other.

worker.agent_node_readbuffer numeric (default: 5000) A buffer size, used by the packet-
forwarding algorithms (in bytes).
It will be allocated for each PoD
worker.

Table 5.3. LSF plug-in configuration

key value Description

lsf_plugin.email_job_output yes/no (default: no) The parameter specifies whether
job's output is sent to the user
by mail. if "no" is set, output
will be delivered to the log
directory in std_[INDEX].err and
std_[INDEX].out files

Configuration

12

key value Description

lsf_plugin.upload_job_log yes/no (default: no) The parameter specifies whether to
upload jobs log files from workers
when PoD jobs are completed. Jobs
log files include a full log of
PROOF, XROOTD and pod-agent's
log files.

Table 5.4. PBS plug-in configuration

key value Description

pbs_plugin.upload_job_log yes/no (default: no) The parameter specifies whether to
upload jobs log files from workers
when PoD jobs are completed. Jobs
log files include a full log of
PROOF, XROOTD and pod-agent's
log files.

pbs_plugin.options_file string (default:
$POD_LOCATION/etc/
Job.pbs.option)

This file can be used to provide
addirtional PBS (qsub) options. Just
create a file and set its path in
pbs_plugin.options_file. Write valid
qsub options in one line, like if you
would write them in a command
line when calling qsub. PoD will
automatically use it (if exists)
while submitting PBS jobs. Be
advised, that the following options
are reserved and are set by PoD, if
you want to adjust them in anyway,
then, please, contact PoD support
and we will find a way. The reserved
options are: -N, -q, -j, -V, -v.

Table 5.5. Grid Engine plug-in configuration

key value Description

ge_plugin.upload_job_log yes/no (default: no) The parameter specifies whether to
upload jobs log files from workers
when PoD jobs are completed. Jobs
log files include a full log of
PROOF, XROOTD and pod-agent's
log files.

ge_plugin.options_file string (default:
$POD_LOCATION/etc/
Job.ge.option)

PoD also supports an GE option
file. If you want to provide some
additional Grid Engine options to
your PoD jobs submitted to OE
cluster, to select some specific
resource or something like that,
than PoD gives you this possibility
via an GE option file. Just
create a file and set its path in
ge_plugin.options_file. Write valid
GE options in it. PoD will
automatically use it (if exists) while

Configuration

13

key value Description

submitting GE jobs. See qsub man
page of GE for more information on
the option file (search for the "-@"
option in the man page).

Table 5.6. Condor plug-in configuration

key value Description

condor_plugin.upload_job_log yes/no (default: no) The parameter specifies whether to
upload jobs log files from workers
when PoD jobs are completed. Jobs
log files include a full log of
PROOF, XROOTD and pod-agent's
log files.

condor_plugin.options_file string (default:
$POD_LOCATION/etc/
Job.condor.option)

PoD is shipped with a default
Condor job description file, which
is used to submit PoD jobs. If users
need to use additional settings or
requirements, in order to tune PoD
job submission, these settings can
be provided via a file specified
by the condor_plugin.options_file
option. Settings from this file will
be added to the default PoD job
description file. The options file
should in the format of standard
condor description files.

Important
All port ranges in the PoD configuration must not have intersections.

5.2. User's environment on workers
PoD provides a possibility for users to execute a custom environment script on workers before PoD processes start.

Users need to create a shell script file with the $POD_LOCATION/etc/user_worker_env.sh or
$HOME/.PoD/user_worker_env.sh name and to code there all variables and commands to export to the
workers. PoD will automatically transfer the script to each worker node and source it there.

For example, If I need to set the path to my ROOT installation on workers. I would create the following file.

#! /usr/bin/env bash

source /usr/local/pub/debian4.0/x86_64/gcc411-21/526-00/bin/thisroot.sh

export LD_LIBRARY_PATH=$MYLIBS/lib:$LD_LIBRARY_PATH
export MYVAR="some vallue :)"

I need also my special profile there
source /etc/profile_extr

http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman1/qsub.html
http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman1/qsub.html

Configuration

14

Be advised, that you need to recreate PoD worker package every time, when you modify the user script or if you
removed it. To recreate the package, just call: pod-prep-worker(1)

The SSH plug-in has it's own machinery to setup custom environment on worker nodes. Please check the pod-
ssh(1) documentation for more information.

5.3. XROOTD/XPROOFD
There is a default XROOTD configuration file, $HOME/.PoD/etc/xpd.cf. The file is generated from the
template ($POD_LOCATION/etc/xpd.cf.in) each time PoD server is started. PoD uses this file to configure
both local server and remote workers.

Tip

In XROOTD documentation you can find details of fine tuning of xrootd. But it is only recommended
for advanced users.

The default xrootd configuration, which comes with PoD should be sufficient for basic operations. In most of use
cases it is not needed to modify the configuration.

If you need additional xpd configuration settings, you can add custom xpd configuration files. PoD will
scan for $HOME/.PoD/user_xpd.cf* and for $POD_LOCATION/etc/user_xpd.cf* and append the
found files to the main xpd.cf. The star symbol in the file names can be change to any other symbol. For
example, the following files will be appended to the main xpd.cf: $POD_LOCATION/etc/user_xpd.cf0,
$POD_LOCATION/etc/user_xpd.cf1, $POD_LOCATION/etc/user_xpd.cf2.

PoD is only meant to help to setup a PROOF cluster on the fly using remote worker nodes. A data access is not
a part of its responsibility.

http://xrootd.slac.stanford.edu/

15

6. Quick Start
PoD Quick Start:

1. Initialize PoD environment: Section 7.1, “Environment”

2. Start PoD server: Section 7.2, “Server”

3. Submit PoD workers to start dynamic PROOF cluster: Section 7.3, “Job Manager”

4. Check status of dynamic PROOF cluster: Section 7.4, “PROOF workers”

5. Use the PROOF cluster for an analysis: Section 7.6, “Analysis”

6. Restart PoD workers (if cluster needs to be reloaded): Section 7.3, “Job Manager”

7. Stop PoD server: Section 7.7, “How to shut down PoD”

The following is the example to illustrate the Quick Start. We use PoD with the SSH plug-in to setup our PROOF
cluster on the bunch of the machines, which are described in the pod_ssh.cfg configuration file.

Detailed descriptions of the commands and of the configuration file can be found in the Chapter 10, Command-
line interface.

PoD Environment:

cd [PoD INSTALL DIRECTORY]
source PoD_env.sh

Important

The current implementation of the SSH plug-in requires users to have a public key access (or
password less) to destination remote hosts (worker nodes).

Starting the cluster:

pod-server start
pod-server status
pod-ssh -c pod_ssh.cfg submit
pod-ssh status
pod-info -n
pod-info -l

The Dynamic PROOF cluster is ready to perform user's analysis code...

Remote Environment

With SSH plug-in it is very often the case, that PoD can't start workers, because xproofd/ROOT is
not in the PATH on worker nodes. If your PoD job fails, just after submission it shows DONE status.
You may want to check the remote log files see the section called “Examples” from the worker nodes
and if it says that there are problems to start xproofd, then you need to customize environment on
WNs. This could happen since with a batch SSH login in some systems you don't get your /etc/
profile script called (login script) and there is no environment variables, like for normal login users.

Quick Start

16

To solve this issue, users either can specify the full path to desired ROOT version on the worker
nodes in the PoD.cfg or just use Section 5.2, “User's environment on workers”. The last one is
very much advisable.

If needed we can restart it:

pod-ssh clean
pod-ssh submit
pod-ssh status
pod-info -n

And finally, lets shut down out PoD(PROOF) cluster:

pod-server stop
pod-ssh clean
pod-ssh status

17

7. How to run
7.1. Environment
In order to enable PoD's environment you need to source the PoD_env.sh script. The script is located in the
directory where you installed PoD.

cd [POD INSTALLATION]
source PoD_env.sh

Also don't forget, before starting PoD the ROOT should be in the PATH as well.

7.2. Server

local and remote PoD servers

There are two ways you can use PoD: as a local server and a remote one. On how to use a remote
PoD server please check the pod-remote(1) command.

Further in this chapter are the instructions on how to use a local PoD server.

Use the pod-server command to start/stop/status PoD servers.

pod-server start

7.3. Job Manager
The next step is to submit remote PoD workers using PoD's job manager. These PoD workers will automatically
setup your PROOF workers on remote hosts. Starting from version 2.0.7 the PoD project supports plug-ins. To
submit remote jobs job manager plug-ins are used. That means PoD could be used on different resources like Grid,
Cloud, RMS or just simple machines with only an ssh access on them. It also possible to use a combination of
plug-ins to get PROOF workers on Grid worker nodes and local batch machines in the same time.

In order to setup a dynamic PROOF cluster on RMS such as gLite, LSF, PBS, Condor, LoadLeveler or (Oracle/
Sun)GridEngine, use the pod-submit command.

The following simple example illustrates a submission of 15 workers to an LSF farm using the "proof" queue.

pod-submit -r lsf -q proof -n 15

Use PoD user defaults to tune individual settings of plug-ins: gLite, LSF, PBS, Condor, LoadLeveler or (Oracle/
Sun)GridEngine.

If there is no RMS available, you can use PoD's SSH plug-in. Please see Chapter 8, SSH plug-in for more details.

7.4. PROOF workers
As soon as a single job reaches remote worker node (WN), it tries to connect to PoD server to transfer information
about itself and environment of WN. When negotiations are done and PoD server accepts WNs, it became a normal
PROOF Worker for the user.

How to run

18

It is not required to wait until all requested workers will be connected. Users could start analysis after reasonable
number of workers are on-line, even after the first connected worker one could start the analysis. When other
workers arrive, the ROOT (PROOF) session must be restarted in order to reconnect to the newly arrived workers.

Tip

PoD supports reconnection. That means if your analysis has a bug or a root session crashed you
don't need to resubmit PoD jobs. You just need to close current root session, open it again. PoD will
manage reconnection with its worker nodes automatically. Worker nodes will be on-line until the
pod-agent service is on-line or until s Grid and/or batch queue time is over.

Use the pod-info command to find out a number

pod-info -n

or to list

pod-info -l

available PROOF workers.

The pod-info -l command can be also used to check, whether a direct connection (preferable) or a packet
forwarded connection is used to connect PROOF server to workers. PoD y default automatically chooses the type
of connections.

If PoD server can't directly connect to its workers on xpd port, then the packet forwarded connection is used. With
this type of connection, some PROOF functions will be limited. For example, workers can't be used as parallel
sub-mergers, since a direct connection between workers will be required. We therefore recommend to open an xpd
port range (PoD user defaults: worker.xproof_ports_range_(min/max)) for incoming connections on the worker
nodes. This will help PoD to set up the most efficient type of connection.

7.5. PROOF Connection String
PROOF connection string - is an URL which is used as a parameter to the TProof::Open method. This URL
actually contains an address of PROOF master, its host and port.

Every time PoD is restarted it uses its automatic port mapping machinery to assign TCP ports to xproofd and other
daemons. That means, a PROOF master port can always be a different one. In order always get the actual port and
even the whole PROOF connection string the pod-info(1) can be used.

For an example analysis, please see Chapter 9, How to test.

7.6. Analysis
Now when your remote PROOF workers (PoD workers) are on-line, you can process you ROOT/PROOF analysis
normally, if it would be a usual PROOF session.

For an example analysis, please see Chapter 9, How to test.

7.7. How to shut down PoD
In order to shut down PoD, a PoD server should be stopped.

How to run

19

pod-server stop

7.8. if something is wrong
If something goes wrong, something doesn't work as expected, please, check the log files first.

Table 7.1. PoD log files

Name Location Description

pod-agent.server.log server.logfile_dir/pod-
agent.server.log

This file contains a log messages
of the pod-agent, which runs on the
user interface.

xpd.log server.logfile_dir/PoDServer This is an XROOTD log file.

All job manager plug-ins are also able to deliver the logs from worker nodes. Please refer to the plug-ins
configuration for more details.

If you still can't resolve the issue or have something to report, use Chapter 13, Support.

20

8. SSH plug-in
8.1. CLI
For users convenience PoD provides a command line interface. One can also use PoD CLI to submit PoD jobs,
instead of using GUI. Meet the CLI documentation and check out the pod-ssh(1) reference for further information.

Before you start, check that PoD Section 7.2, “Server” is running.

The following simple example illustrates a submission of a number of PoD workers (described in the
pod_ssh.cfg configuration file) to a bunch of the machines via SSH.

pod-ssh -c pod_ssh.cfg submit

check the status of PoD workers:

pod-ssh status

There are could be the following values of the status:

• RUN - PoD jobs is running,

• DONE - PoD job is done, means PoD worker is not running on that worker node. It could be also the case that
worker failed to start,

• CLEAN - PoD worker has been cleaned,

• UNKNOWN - it is not possible to retrieve the status of that worker.

Remote Environment

With SSH plug-in it is very often the case, that PoD can't start workers, because xproofd/ROOT is
not in the PATH on worker nodes. This could happen since with a batch SSH login in some systems
you don't get your /etc/profile script called (login script) and there is no environment variables, like
for normal login users. If your PoD job fails, just after submission it shows DONE status. You may
want to check the remote log files see the section called “Examples” from the worker nodes and if
it says that there are problems to start xproofd, then you need to customize environment on WNs.
To solve this issue use inline BASH script.

Now check the status of your dynamic PROOF clusters. The following commands show a number/list of available
PROOF workers, which have been already set up and are online:

pod-info -n
pod-info -l

and finally clean the PoD cluster. The cleaning needs to be performed when user is done with his/her dynamic
PROOF cluster or want to refresh workers (in this case, you need to submit workers again, after the cleaning).
BTW, no need to stop pod-server.

pod-ssh clean
pod-ssh status

SSH plug-in

21

Important

The cleaning of the workers is very important in order to keep the remote environment safe and
clean. Also the cleaning procedure can deliver log files from the workers, see the section called
“Examples”. Unfortunately SSH plug-in can't automatically decide when to clean the workers, you
therefor is responsible to do it.

At the end, check that you shut you PoD server down - Section 7.7, “How to shut down PoD”.

Detailed descriptions of the command and of the configuration file can be found in the pod-ssh(1) reference
manual.

8.2. Configuration

22

9. How to test
9.1. Simple test
The simplest way to test your dynamic PROOF cluster is just to run some simple analysis on it or use the new
benchmark framework: TProofBench.

Now if you want to perform TProofBench tests. Use the Chapter 7, How to run to setup your dynamic PROOF
cluster. As soon as you get required number of workers you can execute the following commands:

$ root
root[] TProofBench pb(gSystem->GetFromPipe("pod-info -c"))
root[] pb.RunCPU()

or for ROOT v5.30 (or higher):

$ root
root[] TProofBench pb("pod://")
root[] pb.RunCPU()

http://root.cern.ch/drupal/content/new-benchmark-framework-tproofbench
http://root.cern.ch/drupal/content/new-benchmark-framework-tproofbench

23

10. Command-line interface

Command-line interface

24

Name
pod-server — Manages PoD server

Synopsis
pod-server {[start] | [restart] | [stop] | [status] | [status_with_code] | [getbins]}

Description
Using this command users can start/stop/restart PoD server and force to download pre-compiled PoD WN binaries
from the central PoD repository. PoD server currently works with two daemons, namely xproofd and pod-agent.

When the status argument is used, pod-server will show running processes including their process IDs and
used TCP ports. For user convenience the pod-server command with the status option prints also a PROOF
connection string (master_host:xproofd_port), which can be used as an argument to TProof::Open in PROOF
analysis scripts. However it is recommended to use pod-info(1) in order to retrieve the current connection string.

Options
start

Start PoD server.

restart
Restart PoD server.

stop
Stop PoD server.

status
Request the status information. It will show which processes are running, under which PIDs and which TCP
ports are used.

status_with_code
This option is exactly the same as status. The only difference is that when the option is used the pod-
server utility exits 0 if PoD server is running, and >0 if it doesn't.

getbins
Force PoD server to download workers pre-compiled binaries from the PoD repository. The binaries than
saved to $POD_LOCATION/bin/wn_bins directory.

Command-line interface

25

Name
pod-info — Shows information about PoD and PROOF workers.

Synopsis
pod-info (1) general options (2) information options (3) connection options
(1) [-h, --help] [-v, --version] [-d, --debug] [-b, --batch]
(2) [[-c, --connection_string] | [-l, --list] | [-n, --number] | [-s, --status] | [--
xpdPid] | [--xpdPort] | [--agentPid] | [--agentPort]]
(3) [--remote arg] [--remote_path arg] [--ssh_opt arg] [--ssh_open_domain arg]

Description
One can use pod-info to retrieve different kinds of information about and from PoD. For example pod-info could
help to find out whether PoD server running or not, how many PROOF workers are already online and which
exactly. Please see the section called “Options” to find out all kinds of information pod-info can retrieve and show.

By default pod-info tries to find and connect to a local PoD server. A PoD server considered to be a local one if
the pod-info and the PoD server run under the same user id. It could be the same machine or different machines
but with a shared home file system. If none of local PoD servers are detected, pod-info will check for any PoD
server managed by the pod-remote(1) command and will connect to the server if found.

When you want to retrieve information about remote PoD servers, than you need to use the --remote option.
Using this option you can specify an ssh connection string, where a remote PoD server is running. The pod-info
command will first try to find the running PoD server on that host and than process user requests on that server.
In the section called “Examples” you will find some use cases.

The pod-info utility exits 0 on success, and >0 if an error occurs.

Options
-h, --help

Produce help message.

-v, --version
Version information.

-d, --debug
Show debug messages. This option enables a debug mode and helps in some cases to understand what is
going wrong.

-b, --batch
Enable the batch mode. For example, in case when the --remote option also used, than there will be no
password prompts or any interaction with a user. The utility will try to use SSH public key authentication
and will fail if it's not working.

The batch mode is very useful, when pod-info is used in a ROOT/PROOF script to retrieve a connection string
(see Example 10.3, “PROOF connection string”). In this case you want pod-info to return either a PROOF
connection string or an empty string in case of an error and no prompts of any kind.

-c, --connection_string
Show a PROOF connection string, which could be passed to the TProof::Open method as an argument (see
Example 10.3, “PROOF connection string”).

-l, --list
List all available PROOF workers.

-n, --number
Report a number of currently available PROOF workers.

Command-line interface

26

-s, --status
Show PoD server status.

--remote arg
A connection string in form of user@host.fqdn. Directs pod-info to use SSH to detect and connect to a remote
PoD server.

--remote_path arg
A working directory of the remote PoD server. It is very important either to write an explicit path or use
quotes, so that shell will not substitute local variable in the remote path. (default: ~/.PoD/)

--ssh_opt arg
If needed, users can provide additional SSH options, which will be used by pod-info in all SSH
communications.

--ssh_open_domain arg

Note

The --ssh_open_domain is in development. So far pod-info can only work with remote
PoD servers which are at least directly accessible via SSH.

The name of a third party machine open to the outside world and from which direct connections to the server
are possible. The optional argument, can be used when PoD server machine is not directly accessible from
outside via SSH.

Examples

Example 10.1. PoD version information

pod-info -v

Get PoD version from a remote PoD server on the machine server.fqdn (it could be also on a shared home
file system there):

pod-info --remote user@server.fqdn -v

Example 10.2. available PROOF workers

a number of workers:

pod-info -n

the same from the remote PoD server:

pod-info --remote user@server.fqdn -n

a list of workers:

pod-info -l

Command-line interface

27

or all together:

pod-info -nl

Example 10.3. PROOF connection string

pod-info -c

the same from the remote PoD server:

pod-info --remote user@server.fqdn -c

or if the remote server has a non-default working folder:

pod-info --remote user@server.fqdn --remote_path "~/pod/work_dir/" -c

use this command in a ROOT script or your analysis code directly:

TProof::Open(gSystem->GetFromPipe("pod-info -c"));

with a remote PoD server:

TProof::Open(gSystem->GetFromPipe("pod-info --remote user@server.fqdn -c -b"));

note, that we use the -b option, because we can't have any prompt in out ROOT script and therefore the call to
pod-info must be silent. Since it will return an empty string in case of failure, users may want to check:

std::string url(gSystem->GetFromPipe("pod-info --remote user@server.fqdn -c -b"));
if(url.empty())
{
 // PoD server is not running
 // print out an error message...
 return 1;
}
TProof::Open(url.c_str());

Example 10.4. PoD server status

pod-info -s

the same from the remote PoD server:

pod-info --remote user@server.fqdn -s

Command-line interface

28

Name
pod-user-defaults — Retrieves values from PoD user defaults configuration file.

Synopsis
pod-user-defaults [-h, --help] [-v, --version] [-c file, --config=file] [--
key=name]

Description
The pod-user-defaults command can be used to retrieve values from the PoD user defaults configuration file for
any given keys. The PoD user defaults configuration "PoD.cfg" is a general PoD settings file, where user can tune
PoD for a specific environment. The file usually can be found in $HOME/.PoD/etc or in $POD_LOCATION/
etc.

Options
-h, --help

Show summary of options.

-v, --version
Version information.

-c file, --config=file
PoD user-defaults configuration file.

--key=name
The pod-user-defaults retrieves a value for the given key. A key must be specified with a its section name
(separated by a dot), for example to find out a working directory on the PoD server, request the value for the
following key: "server.wrk_dir".

Command-line interface

29

Name
pod-prep-worker — Prepares a worker package - all elements of PoD which need to be uploaded to a worker node.

Synopsis
pod-prep-worker

Description
The pod-prep-worker command creates a tar-zipped archive of all files which are required on PoD worker. The
command prepares a PoD worker package. This package and the PoDWorker.sh job script are all what is required
to start a PoD worker.

The pod-prep-worker command must be issued on the PoD server machine and only when PoD server is up an
running. Otherwise the package will be not created.

Command-line interface

30

Name
pod-submit — Submits PoD jobs using a defined resource management system.

Synopsis
pod-submit [-h] [-l] [-r condor|ge|loadleveler|lsf|pbs|glite] [-q queue] [-n X]

Description
Use this command to manually submit PoD workers to a defined resource management system. The command
currently supports:

• LSF (Load Sharing Facility),

• PBS Pro/OpenPBS/Torque (Portable Batch System),

• Grid Engine (Oracle/Sun Grid Engine),

• Condor,

• LoadLeveler (IBM Tivoli Workload Scheduler LoadLeveler),

• gLite.

Use pod-submit -l to find out the list of available and supported CLI plug-ins.

Note

The pod-submit can't be used to submit SSH jobs. In order to use PoD SSH plug-in, please check
the pod-ssh(1) reference manual.

The $POD_RMS_DEFAULT_QUEUE environment variable can be used to define a default RMS queue. If no "-
q" option is provided to "pod-submit", then the value of this variable is used.

The pod-submit utility exits 0 on success, and >0 if an error occurs.

Options
-h

Show summary of options and exit.

-l
Show all available RMS plug-ins.

-r condor|ge|loadleveler|lsf|pbs|glite
A name of the resource management system to use.

-q queue
Submit the jobs to specified queue. (default: "proof" if the value of $POD_RMS_DEFAULT_QUEUE is
empty)

In case of gLite plug-in, queue parametr must define a CREAM CE including a desired queue, for example:

pod-submit -r glite -q atlasce2.lnf.infn.it:8443/cream-pbs-atlas_short -n 30

-n X
Specify a desired number or PROOF workers, where the X option defines the number of workers. (default: 10)

Command-line interface

31

Name
pod-ssh — Submits, retrieves statuses and cleans PoD workers using SSH connections.

Synopsis
pod-ssh [-h, --help] [-v, --version] [-d, --debug] [-c file, --config=file] [-e arg,
--exec=arg] [-t arg, --threads=arg] [--logs] [--for-worker arg] {[submit] | [clean] | [fast-
clean] | [status]}

Description
The pod-ssh command can be used to submit and clean PoD workers using an ssh connection.

Important

The current implementation requires users to have a public key access (password less) to destination
remote hosts (worker nodes).

The pod-ssh command takes PoD's ssh plug-in configuration file as input. The configuration file is a comma-
separated values (CSV) file. Fields are normally separated by commas. If you want to put a comma in a field, you
need to put quotes around it. Also 3 escape sequences are supported.

Table 10.1. PoD's ssh plug-in configuration fields

1 2 3 4 5

id (must be any
unique string).

This id string
is used just to
distinguish different
PoD workers in SSH
plug-in.

a host name with
or without a
login, in a form:
login@host.fqdn

additional SSH
params (could be
empty)

a remote working
directory

a desired number
of PROOF workers
(could be empty).

If this parameter is
empty, than PoD
will spawn as many
PROOF workers on
that host as CPU
cores.

An example of a configuration file:

r1, anar@lxg0527.gsi.de, -p24, /tmp/test, 4
this is a comment
r2, user@lxi001.gsi.de,,/home/user/pod,16
125, user2@host, , /tmp/test,

The pod-ssh command remembers last entered config-file pathname and next time you want to use pod-ssh with
the same config file, you can just call pod-ssh without providing the --config option. The command will always
use the latest given setting. In order to use feature BOOST 1.41.0 (or higher) is required.

Environment on Worker Nodes
With SSH plug-in it is very often the case, that PoD can't start workers, because xproofd/ROOT is not in the
PATH on worker nodes. This could happen since with a batch SSH login in some systems you don't get your /etc/
profile script called (login script) and there is no environment variables, like for normal login users. If your PoD

http://www.boost.org/

Command-line interface

32

job fails, just after submission it shows DONE status. You may want to check the remote log files see the section
called “Examples” from the worker nodes and if it says that there are problems to start xproofd, then you need
to customize environment on WNs. To solve this issue, users either can specify the full path to desired ROOT
version on the worker nodes in the PoD.cfg, in case when all WNs have the same version pf ROOT located by
the same path. But more advisable solution is to use inline bash script.

Inline BASH script
User can define remote environment for PoD SSH worker nodes via a so called inline BASH script. To define a
script just use @bash_begin@ and @bash_end@ tags in your PoD SSH configuration file. For example:

@bash_begin@
 # GSI
 . /etc/profile.d/gsi.sh
 . rootlogin 527-06b-xrd
@bash_end@

r1, anar@lxg0527.gsi.de, -p24, /tmp/test, 4
this is a comment
r2, user@lxi001.gsi.de,,/home/user/pod,16
125, user2@host, , /tmp/test,

Everything what PoD find between those tags will be considered as an environment script and will be sourced on
each worker node listed in that configuration file.

Bu using this feature, users are able to define different configuration files for different clusters, each of which can
define its own list of worker nodes and an environment script accordingly.

Be advised, if inline BASH script is found, then PoD will not use user_worker_env.sh

The pod-ssh utility exits 0 on success, and >0 if an error occurs.

Options
-h, --help

Show summary of options.

-v, --version
Version information.

-d, --debug
Show debug messages. This option enables a debug mode and helps in some cases to understand what is
going wrong.

-c file, --config=file
PoD's ssh plug-in configuration file. A workers description file.

-e arg, --exec=arg
Execute a local shell script on remote worker nodes

-t arg, --threads=arg
It defines a number of threads in pod-ssh's thread pool. Min value is 1, max value is (Core*2). Default: 5

--logs
Download all log files from the worker nodes. Can be used only together with the --clean option. This
command delivers all log files from the worker nodes. Logs are copied to PoD log directory, the path to which
is configurable via PoD user defaults.

Command-line interface

33

--for-worker arg
Perform an action on defined worker nodes. (arg is a space separated list of WN names) Can only be used in
connection with "submit", "clean", "fast-clean", "exec".

submit
Submit PoD workers according to the entries in the configuration file.

clean
Clean all PoD workers according to the entries in the configuration file.

fast-clean
The fast version of the clean procedure. It only shuts worker nodes down. It doesn't actually clean workers'
directories.

status
Request status of PoD workers listed in the configuration file.

There are could be the following values of the status:

• RUN - PoD job is running,

• DONE - PoD job is done, means PoD worker is not running on that worker node. It could be also the case
that worker failed to start,

• CLEAN - PoD worker has been cleaned,

• UNKNOWN - it is not possible to retrieve the status of that worker.

Examples

Example 10.5. Submit PoD jobs via SSH

pod-ssh -c pod_ssh_config_file submit

Example 10.6. Check the status of PoD jobs submitted via SSH

pod-ssh status

Check the amount of available PROOF workers:

pod-info -n

or

pod-info -l

Example 10.7. Clean PoD jobs submitted via SSH

pod-ssh clean

also you can clean and download all log files from the WNs

Command-line interface

34

pod-ssh clean --logs

Example 10.8. Clean only specific worker nodes

pod-ssh --for-worker r1 r2 clean

Command-line interface

35

Name
pod-remote — Using this command users can start/stop/restart remote PoD servers. The utility can also be used
to execute arbitrary commands on remote PoD servers, such as PoD job submissions.

Synopsis
pod-remote (1) general options (2) connection options (3) commands
(1) [-h, --help] [-v, --version] [-d, --debug] [-c file, --config=file]
(2) [--remote arg] [--ssh-opt arg] [--ssh-open-domain arg] [--env-local arg] [--env-
remote arg]
(3) [[--start] | [--stop] | [--restart] | [--command cmd]]

Description
In order to use pod-remote BOOST 1.41.0 (or higher) is required.

Important

The current implementation requires users to have a public key access (password less) to destination
remote hosts (PoD servers).

The pod-remote command offers a possibility to fully control remote PoD servers. A PROOF cluster created
using pod-remote is accessed via SSH tunnels, which are automatically managed by pod-remote.

Using pod-remote it is possible to start/restart/stop remote PoD servers. It is also possible to submit PoD jobs
from remote PoD servers in order to set remote PROOF clusters up.

Most importantly, pod-remote automatically creates and handles SSH tunnels for remote PoD servers, so that
these servers can be used only via SSH connection - outside of a firewall. Tunnels stay alive until remote server
is alive or you restart/stop pod-remote. The pod-remote command creates a background daemon, which regularly
checks the status of the remote PoD server and manages tunnels. Another important feature of pod-remote is its
integration into PoD, see the section called “Examples”.

The pod-remote command remembers all connection options values and next time you want to use pod-remote
with the same server, you can omit these arguments and just call: pod-remote --start/stop/restart
without --remote and --env. The command will always use the latest given settings. If you want to change
the server, just provide new arguments values.

The pod-remote utility exits 0 on success, and >0 if an error occurs.

Options
-h, --help

Produce help message.

-v, --version
Version information.

-d, --debug
Show debug messages. This option enables a debug mode and helps in some cases to understand what is
going wrong.

-c file, --config=file
Specify an options file with the pod-remote command line options.

--remote arg
A connection string including a remote PoD location. For example: loginname@serverhostname:/PoD/
location/pathname

http://www.boost.org/

Command-line interface

36

--ssh-opt arg
If needed, users can provide additional SSH options, which will be used by pod-remote in all SSH
communications.

--ssh-open-domain arg
The name of a third party machine open to the outside world and from which direct connections to the server
are possible. The optional argument, can be used when PoD server machine is not directly accessible from
outside via SSH.

--env-local arg
A full path to a local environment script, which will be executed on the remote-end before PoD starts the
server. This is needed in order to get working environment on the remote host before PoD server can be
started. In most of the case you would need to source proper ROOT environment. You can, of course, also
set some other env. variables in the script, if needed.

--env-remote arg
The same as --env-local, but the script is located on the remote machine and will be sourced there.

--start
Start remote PoD server.

--stop
Stop remote PoD server.

--restart
Restart remote PoD server.

--command
Execute arbitrary commands.

Examples

Example 10.9. Using remote PoD server

Let's say, I have two machines A and B.

A - is my laptop, for example.
B - is a machine (host: lxg0527) standing somewhere at my work place.
 From this machine I can submit jobs to my batch system (LSF, for example)
 or use it as a server for PoD SSH plug-in.

On both machines I have PoD installed.

All the following commands I issue from my laptop (machine A).

Start the remote PoD server:

pod-remote --start \
 --remote manafov@lxg0527.gsi.de:/home/manafov/3.6/ \
 --env-local ../GSI_env_5_27.sh

The command above starts a remote PoD server on the host lxg0527.gsi.de under the user manafov and uses
PoD installed in the /misc/manafov/PoD/3.5.75.gbecd4 directory. To initialize the proper environment
on the remote host the ../GSI_env_5_27.sh script is used.

If everything is OK and remote server is started, pod-remote will create and manage special SSH tunnels from
machine A to B. So, the whole PoD communication and PROOF requests will go via these tunnels.

Command-line interface

37

To set our remote PROOF cluster up, now we need to submit PoD jobs from the remote Server (in case of RMS
plug-ins):

pod-remote --command "pod-submit -r lsf -n 50 -q my_lsf_queue"

or in case of the SSH plug-in

pod-remote --command "pod-ssh -c pod_ssh.cfg submit"

Using --command, you can execute any command vie SSH on the remote server.

Now, you can just use pod-info(1) as usual, as if everything would run locally:

pod-info -s
pod-info -c
pod-info -n
...

The pod-info automatically detects that there is a pod-remote-managed server and will gather the information
directly from it via the SSH tunnels. It means, of course, that to connect from your local machine to your remote
PoD/PROOF cluster you need just to use:

TProof::Open(gSystem->GetFromPipe("pod-info -c"));

To stop the remote PoD server use:

pod-remote --stop

To start the same server again use the following command. Note missing --remote. You don't need it. The
command remembers your last valid settings.

pod-remote --start

To restart the server:

pod-remote --restart

38

11. Tips
11.1. Handling large outputs via ROOT files
There is a great feature in PROOF to help merging big output objects. To enable this feature in your dynamic
PROOF cluster managed by PoD, you need to use an automatic rootd transport instead of the default one (xrootd),
because by default PoD doesn't use xrootd. The rootd transport was implemented in ROOT 5.28 (see the patch).

In order to switch on the rootd transport you need to add "xpd.rootd allow" to your custom XPD configuration file.

http://root.cern.ch/drupal/content/handling-large-outputs-root-files
http://root.cern.ch/viewvc?view=rev&revision=38227

39

12. Known Issues
12.1. General Issues
/tmp on worker nodes
The /tmp directory on remote workers must be open for r/w. PROOF and ROOT writes there. I have redirected
all possible temporary files to PoD working directory, but there are still some files, which ROOT/PROOF writes
to the /tmp, it includes sockets files of proof/xrootd.

PoD on AFS
Since AFS doesn't support pipes you need to change the PoD server working directory in PoD user defaults
configuration, so that a new directory will not reside on AFS anymore. Something like that should work:

[server]
#
PoD working directory
#
work_dir=/tmp/manafov/

WARNING: File /afs/.../pod-worker is not readable by
condor
See the section called “Condor and AFS”

It seems I run always X slaves, but I requested Y.
PoD setups workers on the remote nodes and it makes PROOF master to think (only when PoD packet-
forwarding connection is used), that all of his workers are on the localhost. Actually PoD hides remote
PROOF workers from the PROOF server and acts as a "proxy" between them. And since default value for
PROOF_MaxSlavesPerNode is 2, therefore only 2 slaves get packages. Since all slaves (for PROOF server)
are on the localhost, the other Y-2 workers won't get packages.

See for more information PROOF Wiki:

PROOF_MaxSlavesPerNode
Type: int
Description: Parameter for the packetizers. Limit the number of slaves accessing data on any single node.
Default Value:
In TPacketizer the default value is 4.
In TPacketizerAdaptive and TPacketizerProgressive it is 2.

Note

From other source of information, it looks like the default number of workers reading remotely from
one file node (worker machine) is not "2", but a number of CPU cores of the master node.

In order to resolve this issue, you need to change one variable of your PROOF session (50 is only an example):

http://root.cern.ch/twiki/bin/view/ROOT/ProofParameters

Known Issues

40

proof->SetParameter("PROOF_MaxSlavesPerNode", (Long_t)100);

Hopefully in the future, this will be possible to do through XROOTD configuration file and PoD will manage it
for you automatically.

gLite environment issue at CERN's LSF
If PoD doens't work for you out of the box at CERN on LSF, PoD jobs fail to start PoD workers, then most probably
you are facing so called "gLite environment" issue. Check you the logs from PoD jobs and if you see something
like this in you std_XXX.out of the job, then most probably xproofd will fail to start:

LD_LIBRARY_PATH=/tmp/PoD_cgmwU22625:/opt/d-cache/dcap/lib:/opt/d-cache/dcap/lib64:/opt/glite/lib:/opt/glite/lib64:/opt/globus/lib:\
/opt/lcg/lib:/opt/lcg/lib64:/usr/lib64:/afs/cern.ch/user/m/mbellomo/PoD/3.6/lib:/afs/cern.ch/sw/lcg/external/qt/4.4.2/x86_64-slc5-gcc43-opt/lib:\
/afs/cern.ch/sw/lcg/external/Boost/1.47.0_python2.6/x86_64-slc5-gcc43-opt//lib:/afs/cern.ch/sw/lcg/app/releases/ROOT/5.30.00/x86_64-slc5-gcc43-opt/root/lib:\
/afs/cern.ch/sw/lcg/contrib/gcc/4.3.5/x86_64-slc5-gcc34-opt/lib64:/afs/cern.ch/sw/lcg/contrib/mpfr/2.3.1/x86_64-slc5-gcc34-opt/lib:\
/afs/cern.ch/sw/lcg/contrib/gmp/4.2.2/x86_64-slc5-gcc34-opt/lib:/opt/classads/lib64/:/opt/c-ares/lib/

Note "glite" in the paths.

Just as a workaround, you can try to use Section 5.2, “User's environment on workers” in this file you need just
two lines

#! /usr/bin/env bash
export LD_LIBRARY_PATH=/afs/cern.ch/sw/lcg/external/qt/4.4.2/x86_64-slc5-gcc43-opt/lib:\
/afs/cern.ch/sw/lcg/external/Boost/1.44.0_python2.6/x86_64-slc5-gcc43-opt//lib:/afs/cern.ch/sw/lcg/app/releases/ROOT/5.30.00/x86_64-slc5-gcc43-opt/root/lib:\
/afs/cern.ch/sw/lcg/contrib/gcc/4.3.5/x86_64-slc5-gcc34-opt/lib64:/afs/cern.ch/sw/lcg/contrib/mpfr/2.3.1/x86_64-slc5-gcc34-opt/lib:\
/afs/cern.ch/sw/lcg/contrib/gmp/4.2.2/x86_64-slc5-gcc34-opt/lib:/afs/cern.ch/alice/library/afs_volumes/vol12/geant3/lib/tgt_linuxx8664gcc:\
/afs/cern.ch/alice/library/afs_volumes/vol12/AliRoot/lib/tgt_linuxx8664gcc

or any sutable LD_LIBRARY_PATH you like, just without gLite libs.

Another solution is to check what inserts glite environemnt to your LSF jobs and get rid of it.

12.2. Condor Issues
Condor and AFS
If your home is on AFS, than you need to give permissions to Condor to access some of your PoD directories.
Namely, Condor needs to have full access to the following folders: $HOME/.PoD/wrk and $HOME/.PoD/
log. The last path is the default path for PoD logs. If you changed this path in PoD user defaults settings and a
new log directory is also on AFS, than you need to open it accordingly.

You can do that by issuing the following commands:

fs setacl -dir $HOME/.PoD/wrk -acl system:anyuser rlidwk
fs setacl -dir $HOME/.PoD/log -acl system:anyuser rlidwk

12.3. Grid Issues
ClassAds and Namespace
One may want to compile CLASSADS with namespace support, because gLite UI contains CLASSADS which
compiled without support of namespaces, though some of gLite API libraries (WMSUI for example) require
classads with namespace support. This issue will prevent GAW to be build properly.

https://savannah.cern.ch/bugs/?22696
https://savannah.cern.ch/bugs/?22696

Known Issues

41

Download classads-0.9.9 from here.

tar -xzvf classads-0.9.9.tar.gz
cd classads-0.9.9
./configure --enable-namespace
make
make install

Be advised that in some Linux distributions there is the ClassAds package. For example Fedora 9:

yum install classads
yum install classads-devel

GLOBUS Libs Relocation
If you have gLiteUI installed from relocatable tarball, then you may face this gLite bug by having the following
(or similar ones) error messages while compiling GAW library:

grep: /opt/globus/lib/libglobus_ftp_control_gcc32dbg.la: No such file or directory
/bin/sed: can't read /opt/globus/lib/libglobus_ftp_control_gcc32dbg.la: No such file or directory
libtool: link: `/opt/globus/lib/libglobus_ftp_control_gcc32dbg.la' is not a valid libtool archive

One of the solutions would be to just copy Globus libs to /opt/:

cd $GLOBUS_LOCATION
mkdir -p /opt/globus
cp -rv lib /opt/globus/

GridSite headers missing
If you have gLiteUI installed from relocatable tarball, then you may face this gLite bug. This issue will prevent
GAW to be build properly.

One of the solutions would be to just get these headers from somewhere.

globus_config.h is missing
Since long time gLite UI_TAR installation (I suspect gLite UI as well) is missing "globus_config.h" (see CERN
Savannah - gLite Bug #31180). gLite API is referencing to this file, but is not providing it. Users therefore should
find it some where, to let GAW to use gLite API.

http://www.cs.wisc.edu/condor/classad/
https://savannah.cern.ch/bugs/?22698
https://savannah.cern.ch/bugs/?28113
https://savannah.cern.ch/bugs/?31180
https://savannah.cern.ch/bugs/?31180

42

13. Support
The PoD Support home page is your portal to help and support for the product.

http://pod.gsi.de/support.html

